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NUMERICAL ANALYSIS OF GAS FLOW TAKING INTO ACCOUNT RESISTANCE FORCES 

Yu. N. Gordeev, N. A. Kudryashov, and V. V. Murzenko I~C 532.546 

i. To describe the questions of motion for a gas moving along pipes and arterial fissures 
and for gas being filtrated through a porous medium, one usually uses empirical laws (DWArcy's 
law, the Forkhgeymer relation, etc. [i, 2]). 

The system of equations for gasdynamics taking into account resistance forces; is given 
in [3, 4], and an analysis of a system of general, quasilinear equations was conducted in [5]~ 

This study considers the flow of gas which is described by the Euler equation with re- 
sistance forces. 

The system of equations which describes the flow of isothermal gas has the form 

0 o (rVgu) ._ O; (1 .  i) 7TP+ r-v'b- 7 

o . ,, o ( r ' j u ) =  op F ;  
" E  l + r -  ~ or (1.2) 

P = c~P, ( 1 . 3 )  

where p is the pressure; p is the density; u is the velocity of the flow; j = up is the den- 
sity of the gas flow; c is the isothermal velocity of sound; F is the force of resistance to 
the gas flow; ~ is a symmetry index (~ = 0 for the two-dimensional problem, v = 1 for the cy- 
lindrical problem, and v = 2 for the spherically symmetric problem); r is the position; and t 
is the time. 

For small Reynold's numbers (Re = Xpump -z ~ I) 
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F = F t : =  [Imk-*u, (1.4) 

where k is the permeability coefficient; m is the porosity of the medium; ~ is the viscosity 
of the gas; and I is the characteristic pore dimension. For 1 ~ Re ~ i0, 

F = F 2 = ~ w ~ k - l u  I bn*k-JOut ( 1 . 5 )  

For  t h e  s y s t em of  e q u a t i o n s  ( 1 . 1 ) - ( 1 . 3 ) ,  t h e  boundary  c o n d i t i o n s  and i n i t i a l  c o n d i t i o n s  
are assigned as 

p(r, O) = po, u(r, O) = O; ( 1 . 6 )  

p(O, l) = %(t), u(O, t) == u o. ( 1 . 7 )  

For supersonic gas flow, two families of characteristics arise at the boundary (drl/dt = 
u + c, drf/dt = u - c) and, therefore, the system of quasilinear, hyperbolic equations (i.I)- 
(1.3) requires two boundary conditions (1.7) [5, 6]. If the gas flow is subsonic, then only 
one of the boundary conditions (1.7) is used. 

2. For linear dependence of the resistance force on the velocity of the gas flow, prob- 
lem (i.I)-(1.3), (1.6), (1.7) for x(t) = At and P0 = 0 is self-similar [7, 8]. 

The dimensionless analogs of the pressure f(9) and velocity T(0) are determined by the 
equations 

P ~ Ac~t](O), u = c~(0), 0 = r(ct)-L ( 2 . 1 )  

The s y s t e m of  e q u a t i o n s  ( 1 . 1 ) - ( 1 . 3 )  and c o n d i t i o n s  ( 1 . 6 ) ,  ( 1 . 7 )  a r e  w r i t t e n  in  s e l f -  
similar variables as 

/'((p - -  O) @- q~'jf = - - I  --vO-1/qO; ( 2 . 2 )  

1' + tp'l(q~ -- O) == --arp vO-1lcp2, ( 2 . 3 )  

I(0 -*  ~ )  = 0, ~(o -+ ~ )  = 0; 

I(O = o)  = t,  ~(o = 0) = ,o ,  ( 2 . 4 )  

where o = Dm(kA) -1 and % =  u0c -1 

For filtration flow which obeys the linear D'Arcy's law, we obtain from Eq. (2.3) 

f + ocp = o. ( 2 . 5 )  

The solution of the system of equations (2.2) and (2.5) for a given pressure at the bound- 
ary f(0 = 0) -- i and for two-dimensional flow (v = 0) is a simple wave [9] 

{I --~II~0, 0 ~ 0 o ,  ~ 0 o = a l / 2  . 
/(0).= O~ 0>0o~ ( 2 . 6 )  

/o -1/~, 0 ~ 0o,: 
cp(0) = ( 0, o > 0 o .  

It follows from (2.6) that the velocity of the gas flow is determined by a dimensionless 
parameter, the coefficient of resistance a, and is of constant quantity. 

For a force of zero resistance (a = 0) there is also an analytical solution to the gas- 
dynamical system of equations (2.2) and (2.3) with the conditions (2.4) in the two-dimension- 
al case (v = 0): for ~0 > V~-, 

(2~f~)_11n[~+O_]/T q%+'l/2" ] 
% - V~ v + o+-~ + ~ -- % = -- 2%: 

/ - - L  ~ ] - 2  ~l  " 

for ~0 = 8, 
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and for i s ~o < 2, 

(2 ] / ~ ) _ ,  ]n [ y ~  : ~ _  0 ] / ~ + %  ] + ~ _ _ ~ o = _ _ 2 0  ' ( 2 . 7 )  

/ 
L 

j �9 

It follows from the solutions of (2.7) that for ~0 > r 0, and for ! < ~0 < ~2-, 
~" < 0. The qualitative difference in the behavior of the solutions is related to the time 
dependence of the gas pressure at the boundary • = At. For x(t) = At ~, ~0 ~ v~ and de- 

pends on a. 

Solutions (2.7) for f(6) and ~(e) are valid only for supersonic inflow of the gas (~0 > 
i). For 0 < ~0 < I, the integral curves of (2.7) do not have any physical meaning since 

f(O § * )  + O. 

For o = 0 and % > i, as 0 § ~, @ § ~, i.e., the propagation velocity of the gas front 

is infinite, which corresponds to instantaneous filling of half-space r > O. 

3. We will introduce dimensionless variables and parameters with the equations 

r ' =  rR-*,  t ' =  tcR-l,, u ' =  uc-!, P ' =  PP[*, f =  ]cP[ I, (3.1) 

where R is the characteristic length over which the motion of the gas is considered. 

From now on we will omit the primes, assuming that r = r', t = t', p = p', etc. 

In dimensionless variables (3.1), the system of equations (1.1)-(1.3) and conditions 
(1.6) and (1.7) can be written as 

0 (r~pu) = O; -b-f P + r-V-O-fr (3.2) 

O . 0 ( r ~ ] u ) +  @ 
-gF 1 + r-v-~r -g7 + F = 0,- ] = pu; ( 3 . 3 )  

where 01 = DmR(kpl) -l, 

F = (hu + (~2pu~; 

p(r,O)=pop71=pl, u(r, 0)--':0; 

p (0, t) = Z (t) p-Z~,, u (0, t) = UoC-* = vo, 

o 2 = Xm2 cRk- I 

(3.4) 

(3,5) 

(3,6) 

The solution of the system of equations (3.2)-(3.4) with initial conditions and bound- 
ary conditions (3.5)-(3.6) was determined numerically by decomposing the problem into two 
fractional steps in time [i0]. The decomposed system of equations has the form for tn ~ t < 
tn + ~/2. 

7 a - f  ] + r -  -gTr(~P)=7 " - p - F "  2 at p = 0 *  ( 3 , 7 )  

t~ + ~ /2  ~< t < tn+,; 

1 0 I a . 0 v" 
T ' ~ f P  q- r-VaflT(rVptt ) = O, y ~ - ]  q- r-V~-r (r ]u) = 0, (3.8) 

where ~ is a step in time; tn+ I = t n + ~; n = I, 2, .~ 

The differential operators in (3.7) and (3.8) can be replaced by difference operators. 
For the first fractional step, then, this system of equations is approximated by the implicit 
difference scheme on a four-point grid. Calculation of the flow at this step was done by 
considering the effects of the pressure gradient and the forces of friction. The obtained 
results were used to calculate p and j for the second fractional step. The transport equa- 
tions for pressure and flow (3.8) were solved numerically by the method of flux corrections 
[ii, 12]. Such a solution was obtained in two stages. For the first stage, diffusion was 
included in the difference scheme, which is analogous to artificial viscosity in convention- 
al difference schemes. The quantity of diffusion coefficients was determined by the condi- 
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tions of conservativeness for the difference scheme and by the positivity of the numerical 
solution. Hence, the difference scheme became monotonic. The second stage involved correc- 
tions of the obtained solution by introducing antidiffusion. The errors which entered into 
the first stage due to diffusion then significantly decreased. 

There are several modified versions of the method of flux corrections [ii, 12]. For 
optimizing the correlation of this method with a system of transport equations for describ- 
ing gas flow with shock waves, the transport calculation for the first stage was done using 
an explicit difference scheme, and, for the second stage, it was done using an implicit 
scheme. 

Using such an algorithm allows one to achieve stability and high accuracy for the solu- 
tions, even for intense discontinuities. As was shown in experiments, discontinuities in the 
solutions described by the system of equations (3.2)-(3.4) only spread to two to three points. 
Compared to traditional difference schemes, solving the transport equations by the method of 
flux corrections substantially (three to four times) reduces dispersion errors, errors in amp- 
litude, and oscillations near the solution discontinuities. 

The number of steps in position for numerically integrating the system of equations 
(3.7) and (3.8) was equal to 500. The number of steps in time was determined by the condi- 
tions of Courant. 

An estimation of the accuracy of the numerical solutions was done using Richardson's 
method, where solutions were compared for two different steps in position and time, and the 
maximum error in the solutions was found to be less than 1.5%. 

The difference scheme used allowed us to obtain all the unseparated surfaces of discon- 
tinuity. 

4. As a result of solving the system of equations (3.2)-(3.4), with conditions (3.5) and 
(3.6), the space-time dependences of the pressure and velocity characteristics of the gas were 
obtained. 

In Fig. i, the dependences of pressure and velocity on position for a fixed moment in time 
are given, where x(t)p[ l = pf + At (pf = 0.01, A = 0.i). The boundary value for the velocity 
of gas inflow was taken as v 0 = 2. Curves I-3 correspond to gas characteristics where the 
resistance force depends linearly on the velocity (01 = 0.2), at times t = i.i, 1.8, and 2.4; 
curves 4 and 5 show the pressure and velocity without a resistance force (o I = 0) at times 
t = 1.0 and 2.1. 

The calculation results are similar to the analytical dependences obtained in Sec. 2 for 
the gas pressure and velocity. Some of the deviations are due to consideration of the effect 
of background pressure for a given method of calculation. For certain conditions, a shock 
wave already forms at the initial moment in time and is directed oppositely to the flow of the 
gas. This is also true for the solution of the self-similar problem (2.2)-(2.4). The gas 
pressure %t the shock wave front increases suddenly, and the gas velocity decreases from 
supersonic to subsonic. The intensity of the shock wave increases over time, and the sudden 
pressure change is gradually displaced in the direction of the gas flow. A shock wave is not 
formed for all supersonic gas inflow velocities but is formed only for some large critical 
velocities v 0 > v* > i. For v 0 = v*, the sudden change in gas pressure is located at the 
boundary. The intensity of the shock wave is related to the value of the dimensionless co- 
efficient of the resistance force o i. For an increase in o l, the critical value of the veloc- 
ity v* also becomes greater. 
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The dependences of gas pressure (to the left) and velocity (to the right) on position 
for different moments in time are given in Fig. 2. The boundary condition in this series of 
calculations was x(t)p~ l, the initial pressure was pf = 0.01, and the velocity of gas inflow 
was v 0 = 2. Curves i-4 correspond to gas flow with a resistance force for t = 0.4, 1.2, 2.5, 
and 8.5 where o I = i; curves 5-7 show dependences of pressure and velocity at times t = 1.3, 
3.5, and 7.0 for o I = 0. For a given boundary condition, the shock wave is not formed at the 
initial moment in time, but later, t = t* - 2, after the motion begins. In addition, the 
shock wave moves farther toward the boundary with time, i.e., in a direction opposite to the 
motion of the gas. The intensity of the shock wave increases with time. It is evident in 
Fig. 2 that for gas flow with a resistance force, there is not only a reflected shock wave, 
but there is also a direct wave which is propagated in the unperturbed gas. The intensity of 
the direct wave decreases with time. 

The results discussed above correspond to two-dimensional gas flow where the resistance 
force depends linearly on velocity. To examine the possibility of forming a shock wave using 
a different dependence F(u), calculations were performed where the resistance force depends 
on the square of the velocity [Eq. (3.4)]. 

The boundary conditions were taken to be: x(t)p[ l = i, v0 = 4 for an initial pressure 
of pf = 0.01. In addition, o• = 10 -3 and 02 = i. 

In Fig. 3, the dependences of pressure and velocity on position for times t = 0.9, 1.8, 
5.0, and 10.4 (curves I-4) are given. For a dependence such as F(u), a shock wave is also 
formed. 

For spherically symmetric flow (v = 2) at r = r 0 = 0.i, the boundary conditions are 
p(r 0, t) = i, u(r0, t) = 4. The initial pressure is pf = 0.01. 

The dependences of gas pressure and flow velocity on position for t = 0.25, 1.0, 5.0, and 
9.5 (curves 1-4) when the resistance force depends linearly on velocity (o I = I) are shown in 
Fig. 4. 

For spherically symmetric gas flow, in contrast to two-dimensional flow, the pressure 
decreases with distance from r = r0 to r = r* - 8. Beginning with r > r*, the gas pressure 
increases, and a shock wave forms at some moment in time t = t* - 0.5. 

We will briefly summarize the results of this study. The solutions of the system of equa- 
tions (1.1)-(1.3) for some conditions asymptotically coincide with the solutions of the gas 
filtration equations. However, for gas inflow velocities greater than the speed of sound, a 
reflected shock wave can form in the medium. Formation of the shock wave can occur both at 
the initial moment of time and at some later time, after the flow begins~ The origin of re- 
flected shock waves during isothermal gas flow with resistance forces is consistent, inde- 
pendent of the geometry of the problem. 

The authors thank E. E. Lovetskii and B. L. Rozhdestvenskii for useful discussions about 
the study. 

LITERATURE CITED 

I. S. A. Kristianovich, The Mechanics of Solid Media [in Russian], Nauka, Moscow (1981). 
2. P. Ya. Polubarinova-Kochina, Theories of Underground Water Flow [in Russian], Nauka, 

Moscow (1977). 

545 



3. V. N. Nikolaevskii, K. S. Basniev, A. T. Gorbunov, and G. A. Zotov, The Mechanics of 
Saturated Porous Media [in Russian], Nedra, Moscow (1970). 

4. R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media [in Russian], 
Nauka, Moscow (1978). 

5. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations [in Russian], 
Nauka, Moscow (1968). 

6. L. D. Landau and E. M. Livshits, The Mechanics of Solid Media [in Russian], Gostekhizdat, 
Moscow (1954). 

7. N. A. Kudryashov and V. V. Murzenko, "Self-similar solution of problems involving axial- 
ly symmetric gas flow through a porous medium with a quadratic resistance dependence," 
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1982). 

8. A. G. Bondarenko, V. M. Kolabashkin, and N. A. Kudryashov, "Self-similar solution of 
problems involving gas flow through a porous medium under conditions of turbulent filtra- 
tion," Prikl. Mat. Mekh., 44, No. 3 (1980). 

9. G. I. Barenblatt, "Self-similar flow of compressed liquid in a porous medium," Prikl. 
Mat. Mekh., 16, No. 6 (1952). 

10. V. M. Kovenya and N. N. Yanenko, The Method of Decomposition in Problems of Gasdynamics 
[in Russian], Nauka, Novosibirsk (1981). 

ii. J. P. Boris and D. L. Book, "Solving equations of discontinuity by the method of flux cor- 
rections," in: Calculation Methods in the Physics of Plasma [Russian translation], J. 
Killen (ed.), Mir, Moscow (1980). 

12. J. P. Boris and D. L. Book, "Fully multidimensional flux-corrected transport algorithms 
for fluids," J. Comput. Phys., ii, No. 38 (1979). 

INFLUENCE OF THE SHOCK LAYER ON THE VISCOUS DRAG 

OF STAR-SHAPED BODIES WITH PLANAR SIDE PANELS 

G. I. Shchepanovskaya and V. A. Shchepanovskii UDC 533.6.013.12 

The ratio of the wave drag determined by the intensity of the corresponding shock layer 
and the viscous drag due to surface friction is practically clear for three-dimensional bodies 
of concave cross section, but for star-shaped configurations some further development is neces- 
sary. Calculations using linear theory [i], from which we see that the wave drag of a 
star-shaped body is less than that of a body of revolution of equivalent length and volume, 
only serve to stress the desirability of such a study. 

For a fixed length of a configuration with planar side panels the wave drag is deter- 
mined by the relative thickness, and depends slightly on the number of petals [2, 3]. As the 
thickness decreases, for unchanged body length and number of petals, and for a fixed volume, 
the wave drag decreases, the viscous drag increases, and the size of the petals increases, lead- 
ing to a considerable increase of the washed surface area [4]. The external inviscid flow for 
the boundary layer on the configuration surface is the flow behind the bow shock wave (the 
shock layer). In calculating the viscous drag coefficient one must consider each petal as a 
flat plate with a skewed leading edge [2, 5, 6]. The friction drag is determined by integrat- 
ing the local coefficient over the surface. 

In this paper we investigate the influence of the shock layer on the boundary layer char- 
acteristics and the friction drag. We calculate the friction coefficient as a function of the 
incident stream parameters and the shape geometry. The wave and viscous drag coefficients 
are compared. 

i. We consider supersonic flow over a star-shaped body, with uniform flow over the pla- 
nar side panels. The unperturbed flow velocity U is directed along the body axis. The shape 
geometry is fully determined by giving the linea~ size D (the diameter of the cone of equiv- 
alent length and volume) and three dimensionless parameters: ~, the elongation (ratio of the 
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